Search results for "copper transport"

showing 9 items of 9 documents

Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis

2020

The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHL…

0106 biological sciences0301 basic medicineArabidopsis thalianaPlant Sciencelcsh:Plant culture01 natural sciencesHigh affinity copper importer 103 medical and health sciencesIron homeostasisCopper uptakeArabidopsisIron homeostasisBIOQUIMICA Y BIOLOGIA MOLECULARmedia_common.cataloged_instanceArabidopsis thalianalcsh:SB1-1110European unionmedia_commonbiologyChemistryHigh affinity copper transportbiology.organism_classificationCell biologyMetal mobilization030104 developmental biologyChristian ministryMetal mobilizationMetal interactions010606 plant biology & botany
researchProduct

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

2018

[EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionall…

0106 biological sciences0301 basic medicineMutantchemistry.chemical_elementPlant Sciencelcsh:Plant culture01 natural sciencesTCP1603 medical and health sciencesTranscriptional regulationGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARExtracellularmedicinelcsh:SB1-1110COPT3transcriptional regulationheavy metalsTranscription factorSecretory pathwayOriginal ResearchCopper transportmedicine.diseaseCopperCell biology030104 developmental biologyHeavy metalschemistrycopper transportCopper deficiencyIntracellular010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Identification and molecular characterization of the high-affinity copper transporters family in Solanum lycopersicum

2021

Copper (Cu) plays a key role as cofactor in the plant proteins participating in essential cellular processes, such as electron transport and free radical scavenging. Despite high-affinity Cu transporters (COPTs) being key participants in Cu homeostasis maintenance, very little is known about COPTs in tomato (Solanum lycopersicum) even though it is the most consumed fruit worldwide and this crop is susceptible to suboptimal Cu conditions. In this study, a six-member family of COPT (SlCOPT1-6) was identified and characterized. SlCOPTs have a conserved architecture consisting of three transmembrane domains and β-strains. However, the presence of essential methionine residues, a methionine-enri…

0106 biological sciencesATPaseBiotecnologia agrícolaMolecular ConformationGene ExpressionCOPT01 natural sciencesBiochemistryTomatoStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundCopper Transport ProteinsSolanum lycopersicumStructural BiologyGene expressionTomàquetsAmino Acid SequenceHeavy metal stressMolecular BiologyConserved SequencePhylogenyPlant Proteins030304 developmental biology0303 health sciencesMethioninebiologyChemistryfood and beveragesGeneral MedicinePeroxisomeYeastComplementationTransmembrane domainBiochemistryMultigene Familybiology.proteinCopper010606 plant biology & botanyCysteineInternational Journal of Biological Macromolecules
researchProduct

Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana

2015

Highlight Cyclic expression of copper transport and the responses to copper deficiency are integrated into the light and circadian–oscillator signalling in plants.

0106 biological sciencescopper deficiencyArabidopsis thalianaPhysiologyPeriod (gene)Circadian clockArabidopsischemistry.chemical_elementPlant Science01 natural sciencesdiurnal rhythm03 medical and health sciencesGene Expression Regulation Plantcircadian clockmedicineArabidopsis thalianaHomeostasisCircadian rhythmSLC31 Proteinsheavy metalsTranscription factorCation Transport Proteins030304 developmental biologyGeneticsheavy metals.0303 health sciencesbiologyArabidopsis ProteinsSuperoxide DismutaseGiganteafood and beveragesbiology.organism_classificationmedicine.diseasePlants Genetically ModifiedCopperCell biologyCircadian RhythmDNA-Binding Proteinschemistrycopper transportCopper deficiencyCopper010606 plant biology & botanyResearch PaperTranscription Factors
researchProduct

Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation

2019

Copper (Cu) deficiency affects iron (Fe) homeostasis in several plant processes, including the increased Fe requirements due to cuproprotein substitutions for the corresponding Fe counterpart. Loss-of-function mutants from Arabidopsis thaliana high affinity copper transporter COPT5 and Fe transporters NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3/4 (NRAMP3 and NRAMP4) were used to study the interaction between metals internal pools. A physiological characterisation showed that the copt5 mutant is sensitive to Fe deficiency, and that nramp3nramp4 mutant growth was severely affected under limiting Cu. By a transcriptomic analysis, we observed that NRAMP4 expression was highly induced in …

0301 basic medicinePhysiologyIron[SDV]Life Sciences [q-bio]MutantArabidopsislcsh:Medicinechemistry.chemical_elementChromosomal translocationVacuolePlant RootsArticleMetal03 medical and health sciences0302 clinical medicineCopper Transport ProteinsGene Expression Regulation PlantMetalloproteinHomeostasis[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySLC31 Proteinslcsh:ScienceComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationMultidisciplinaryArabidopsis Proteinslcsh:RBiological TransportTransporterPlants Genetically ModifiedCopperCrosstalk (biology)030104 developmental biologychemistryMetalsvisual_artVacuolesvisual_art.visual_art_mediumBiophysicslcsh:QPlant sciences[SDV.AEN]Life Sciences [q-bio]/Food and NutritionCopper030217 neurology & neurosurgeryScientific Reports
researchProduct

Temporal aspects of copper homeostasis and its crosstalk with hormones

2015

To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxin…

Arabidopsis thalianaEstrès oxidatiuCircadian clockFisiologiahormone signallinghormone signalingMetal toxicityOryza sativaReviewPlant ScienceBiologyCircadian clocklcsh:Plant culturechemistry.chemical_compoundAuxinhormone biosynthesisoxidative stresslcsh:SB1-1110Abscisic acidchemistry.chemical_classificationGeneticsfood and beveragescopper homeostasiscopper transportersCell biologyOxidative stress.Crosstalk (biology)chemistryGibberellinHomeostasisHormoneFrontiers in Plant Science
researchProduct

The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development

2004

Copper plays a dual role in aerobic organisms, as both an essential and a potentially toxic element. To ensure copper availability while avoiding its toxic effects, organisms have developed complex homeostatic networks to control copper uptake, distribution, and utilization. In eukaryotes, including yeasts and mammals, high affinity copper uptake is mediated by the Ctr family of copper transporters. This work is the first report on the physiological function of copper transport in Arabidopsis thaliana. We have studied the expression pattern of COPT1 in transgenic plants expressing a reporter gene under the control of the COPT1 promoter. The reporter gene is highly expressed in embryos, tric…

TransgeneArabidopsisDown-Regulationchemistry.chemical_elementPlant RootsBiochemistrychemistry.chemical_compoundGenes ReporterArabidopsisArabidopsis thalianaRNA MessengerTransgenesMolecular BiologyCopper Transporter 1Reporter geneDose-Response Relationship DrugbiologyArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionMembrane Transport ProteinsBiological TransportTransporterCell BiologyOligonucleotides AntisensePlants Genetically Modifiedbiology.organism_classificationCopperTrichomeUp-RegulationBiochemistrychemistryMicroscopy Electron ScanningPollenGrowth inhibitionCopperPhenanthrolinesPlasmidsJournal of Biological Chemistry
researchProduct

Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis1

1998

Abstract A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1(ATX1) has been identified from Arabidopsis. This gene, referred to as CopperCHaperone(CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating thatCCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase geneSOD1, both ATX1 and CCHprotected the cell from t…

endocrine systemDNA ComplementarySaccharomyces cerevisiae ProteinsPhysiologyMolecular Sequence DataSaccharomyces cerevisiaeSOD1ArabidopsisGene ExpressionSaccharomyces cerevisiaePlant ScienceFungal ProteinsGene productSuperoxide dismutaseOzoneCopper Transport ProteinsComplementary DNAArabidopsisGene expressionGeneticsHomeostasisAmino Acid SequenceCation Transport ProteinsBase SequenceSequence Homology Amino AcidbiologyArabidopsis ProteinsGenetic Complementation Testbiology.organism_classificationYeastOxidative StressBiochemistrybiology.proteinCarrier ProteinsCopperResearch ArticlePlant Physiology
researchProduct